

The New Zealand Institute for Plant & Food Research Limited

# Greenhouse experiments assess effects of soil nutrients on Spongospora subterranea infection of potato

Richard Falloon<sup>1,2</sup>, Denis Curtin<sup>1</sup>, Ruth Butler<sup>1</sup>, Farhat Shah<sup>1</sup>, Loreto Hernandez<sup>1</sup> & Ikram Khan<sup>1</sup>

<sup>1</sup>New Zealand Institute for Plant & Food Research, <sup>2</sup>Bio-protection Research Centre, Lincoln University

### Australian Potato Research Program stakeholders































APRP1
Field survey of powdery scab in crops (MASH trials)

### Soil test results (ppm)

| Soil element/factor | High levels of powdery scab | Low levels of powdery scab |
|---------------------|-----------------------------|----------------------------|
| Zinc                | 3.8                         | 7.9                        |
| Nitrogen            | 57                          | 85                         |
| Iron                | 56                          | 215                        |
| Sulphur             | 3.0                         | 5.6                        |
| Potassium           | 495                         | 324                        |
| Calcium             | 2046                        | 1457                       |
| Boron               | 0.67                        | 0.47                       |
| рН                  | 5.6                         | 5.3                        |



### **Greenhouse experiments**

### Uninoculated or inoculated with *S. subterranea*

- Water uptake
- Plant parameters
- Root infection (root galls)

Susceptible cultivar ('Iwa')







**Numbers of root galls** 

#### **Previous results**

- Sulphur reduces disease
- Boron reduces disease
- Ammonium N reduces disease
- Nitrate N small reduction
- Manganese small reduction
- Zinc small reduction
- pH no effect
- Iron no effect





### Sulphate sulphur







### Potassium Shoot and root weights



### **Potassium**

### **Root galls**





## **Silicon**Root galls





### **Silicon**Shoot and root weights



### Silicon rates and irrigation regimes

#### Silicon rates (sodium metasilicate)

0, 14, 28, 42, 56 or 84 mg L<sup>-1</sup>,
 in nutrient solutions

#### **Irrigation**

- infrequent (2 3 day intervals)
- frequent (each day)



### Daily water use



### **Daily water use**



### Daily water use (42 d after inoculation)

Infrequent irrigation (2-3 d)

Frequent irrigation (1 d)



### Intensity of root hyperplasia















#### **Conclusions**

- Sulphur reduces disease
- Boron reduces disease
- Ammonium N reduces disease
- Silicon possibly "alleviates" effects of Spongospora root infection (from two expts)



pH - no effect on root infection

Iron - no effect

Sulphate sulphur - no effect

**Manganese - small reduction** 

Zinc - small reduction

Nitrate N - small reduction

Potassium - small reduction (high rates)





